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I. Introduction. The development of computers thirty years ago made

it practical to calculate finite difference approximations of elliptic

partial differential equations. For these calculations the solution of

a linear system AU = F, which is the finite difference representation

of the differential equation, is fundamental. Hardware characteristics

of early computers, particularly memory limitations, spurred the

development of direct iterative methods for these linear systems. In

direct iterative schemes the matrix A splits into a difference A = M-N,

and one generates a sequence JUM ) according to MUM = NU("'I)+F.

Convergence of the method is governed by the spectral radius p of H 1 N:

{U(V ) ] converges to the solution if p < 1, and smaller p implies faster

convergence.

The first iterative methods were point methods -- in any step of

the iteration they solved for one component of the unknown solution

vector at a time. Intuition suggests that iterative algorithms that

solve for several points at once will converge more rapidly than point

algorithms. The Gaussian elimination algorithm is seen in this light

to converge in one step. Frankel [14], Young [34], Arms, Gates, and

Zondek [1], and Varga [32], using the algebraic structure of the linear

systems, and Parter [221, [23], by exploiting the nature of the systems

as finite difference approximations to elliptic partial differential

equations, determined the convergence rates of point and block

iterative methods. The results confirmed that iterative methods on

blocks comprising several lines of unknowns indeed converged faster

than point methods. Much of the work up to 1961 is collected in [33].

The usual finite difference approximations are accurate to second

order in the spatial mesh size h. In the middle 1960s attention turned

to higher order approximation methods -- finite element and other
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projection methods, which are still the subject of intensive study

(136], [7], [21, [301, [51, [10]). Because of their treatment of

boundary conditions, these methods are formally easier to obtain than

higher order finite difference approximations, and for a given accuracy

their corresponding linear system of equations is smaller than the

finite difference system. Hence interest in direct factorization

methods for linear systems grew, and continues today; see 1271, [281,

[151, and [16).

At about the same time it was seen that their regular structure

made separable finite difference elliptic systems amenable to special

fast direct factorization methods ([18], [91, [12], [31]). For a

limited class of nice elliptic problems, then, it became practical to

compensate for the second order accuracy of the usual finite difference

approximation by taking a sufficiently small h and exploiting the

regular structure of the linear system.

But not every problem is nice. Moreover, within the past few

years a growing desire to solve three-dimensional problems, together

with the development of novel computer architectures -- array

processors, vector machines, and multiprocessors -- has rekindled

interest in block iterative methods for elliptic systems. The effects

of special architectures are considered in [291, (17], and [19], while

an analysis of the convergence rates of iterative methods for fairly

general elliptic problems already appears in [23].

But not every analysis is nice, and that of [23], partly because

of its generality, is somewhat opaque. A relatively direct discussion

of the basic ideas is given in [3] for the Poisson problem in a square.

That presentation uses the strong estimates of Nitsche and Nitsche [21]

and of Brandt [8).
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Our purpose here is to reexamine the convergence rates of

iterative block methods for elliptic difference equations. A feature

of the present analysis is that we avoid the estimates of 1211 and 18).

For the Poisson problem in two or three dimensions this is of little

moment. But the Nitsche estimates have never been extended to general

regions, and must fail in dimensions greater than three. In contrast,

we will show that our new approach is easily extended to general

domains, to any number of dimensions, and to general elliptic

difference equations.

In addition, we can deal with certain kinds of singularly

perturbed elliptic difference equations. Such equations can arise when

solving parabolic problems by discrete time methods. For instance, let

A :I.2 a2 /ax.2 be the two-dimensional Laplacian; the backward Euler

method for the parabolic operator (c0a/3t)-A leads, at each time slice

t to an elliptic operator

(1.1) c/1-A, T := tn - t I.

Let Ah be a finite difference approximation to A on a spatial mesh of

size h; we get a matrix A representing the elliptic difference

operator ch2 /-h2Ah. If ch/i , then A corresponds to

(1.2) ;ho - h2a .

We distinguish four cases. Analysis of the first, in which a < 0,

is easy: p = O(h'U), and iterative methods converge very rapidly. In

the second, a = 0, and (1.2) is a singularly perturbed operator. We

have studied this operator in [26], where it arose from plane iterative

methods for the Poisson problem in the unit cube; the attack there,
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though related to some of the ideas of this report, seems to be

particular to the model operator (1.1) and' rectangular domains.

In this paper we restrict our attention to the third and fourth

cases, wherein 0 < a 2. If a = 2, then (1.2) is a regular elliptic

difference operator, to which both the earlier and our new analyses

apply. When 0 < a < 2, (1.2) is again a singularly perturbed operator;

but it too can be handled with our present methods, unlike the instance

= 0. To justify considering this case, we point out that a = 1 for

the optimal choice of r in the Crank-Nicolson method for parabolic

problems.

We begin in section 2 with a description of the model elliptic and

parabolic problems in the two-dimensional unit square. It is worth

remarking that our model problems need not be self-adjoint. Section 3

is devoted to proving the convergence rates of iterative schemes

satisfying certain basic assumptions.

In section 4 we describe block structures of particular interest

-- k-line and kxk blocks -- and the usual iterative schemes: Jacobi,

Gauss-Seidel, and successive overrelaxation. In these schemes A splits

into a difference A = M-N. The key to our analysis is that it suffices

to consider only the block Jacobi scheme, for which N is essentially a

sum of one-dimensional weak multiplication operators N. We demonstrate

this decomposition of N in section 4, and discuss the action of N in

section 5. In section 6 we use the theory of section 3 and properties

of W to derive the convergence rates of the block iterative methods of

section 4.

Next we take up more general problems: other operators in section

7, and other domains in section 8. We conclude in section 9 with some

comments about the general applicability of our method of analysis.

5

maim -



2. The model problems. The basic ideas are clearest in this simple

setting. We construct finite difference approximations of the partial

differential operators

Lu -Au + du~ + eu

(2.1)

lu cu t + Lu

on the open unit square

Q ={(x,y) e R 2:0 < X, y < 1

in the usual way. Impose on 5 a mesh with uniform spacing

(2.2) h :=l/(P + 1)

and let (x.,ty.) :=(ih,jh). Define the set of interior mesh points 0 h

and the discrete boundary Bnh by

(2.3) (x.,y. I S i, j 5 P),

[(xi,y.) i = 0 or = P+l, or j = 0 or = P+11.

A mesh vector U = U1, 0 S i, j S P+11 is a function defined on the

entire discrete mesh 1h 0hU a%'~

The discrete Laplace operator is defined at points in Q h by

[(&hUji := (Ui..l,j - 2U1,j + U.+1.)/h 
2

(2.4)

+ ( ij1 -2Ui~i+ i,j+l /2

We suppose that c, d, and e are smooth functions on 0and that

(.) c(x,y) ~c0 > 0 on



The discrete operators that arise in approximating (2.1) are then

[L hU). . I-AhU]. . + d i ~ (1 -~~ U. .-~ )/(2h)

(2.6)

+ e .03 -Vij1 U ..-)/(2h)

and

(2.7) (V11 i j (c. ./r)U. . + [LhU]i~,j'

where T > 0 is given and, for instance, c 1 3  c(x.,y.).

Note that, although the mesh vector U is defined on Rh' the

vectors hU , LhU , and .9hU are defined only at the interior mesh points.

As usual, the forward difference operators are given by

VxU.13 (U i+i ~ U.~ .)/h (0 ;i i 9 P, 1 I j P)
(2.8)

V U. . (U.+ -U .)/h (I Ii :5P, 0 S-j P).
y 1,3 1'+ i~J

Given mesh vectors F and G, the model elliptic problem is to find

a mesh vector U satisfying

(2.9) LhU=F in "ho U=G on ah

and the model parabolic problem requires U to solve

(2.10) IbU=F in Q\. U=G on 3% .

After choosing an ordering of the mesh points (x.,y.) -- or,

equivalently, of the components of U -- we let A be the matrix

representing h2L ho h 2 h* As indicated in (2.4), "h , L h, and k h map

vectors with P2 +4P components into vectors with P 2 components. Hence A

is a matrix of order P 2; the known boundary values G are put on the
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right hand sides of the difference equations (2.9) and (2.10). In

either case we arrive at a linear system

(2.11) AU=

of order P2 where T indicates the result of ordering the components of

h2F and of including the G terms.

Every vector U with P2 components may be viewed as a mesh vector

on that also satisfies

(2.12) U = 0 on 31h .

Henceforth we assume every mesh vector U satisfies (2.12).

An iterative method for solving (2.11) is determined by a

splitting

(2.13) A = H - N.

Rewrite (2.11) as

U = NJ+F.

After choosing a first guess U(O), we obtain a sequence (U(V )j from

(2.14) MU() = NU(V-1) + F.

It is well known that when A is nonsingular the iterates 171

converge to the unique solution of (2.11) independently of U(0 ) if and

only if the spectral radius

p := max (IXI det(XlM-N) 0)

of H' N satisfies p < 1. So the first thing we require of a splitting
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is that p < 1. Evidently the iterates {U )} of (2.14) converge more

rapidly for smaller p. Hence our task is 'to determine the asymptotic

behavior of p as h - 0.

For future reference we note that corresponding to every A for

which det(AM-N) = 0 there is a vector V 0 satisfying AV = NV. We

also record two lemmas regarding V , V, and "h' Let X and Y be mesh

vectors; define an inner product and associated norm

(MY) := Zi~ij Xi~ji i , 1XI h := X) 1 /

An operator B on mesh vectors is normed in the customary way by

IBI h := sup {IBXI IX =1 I .

As usual, IdI. denotes the sup norm of d over f.

Lemma 2.1. If U is a mesh vector satisfying (2.12), then

(VxU,V U) + (VyUV U) = (-Ahuu).

Proof. Summation by parts; see 111] or 120]. D

Lemma 2.2. If U is a mesh vector satisfying (2.12), then

(IVXUIIUI) + (IVy UIUI) < IUIh[2(-&hU,U)]1 /2 .

Proof. By the Schwarz inequality,

(IVxUIIUI) + (IVyUIIUI) 5 IUIh[IVxUIh + IVyU1h].

2 2
But the inequality 2ab < a +b and Lemma 2.1 show that

[IV xUI h + IVy UN hj2 5 215VxU1 h 2 + IVyU1h2= 2(-6hU,U).



3. A general approach. To begin the analysis of the splitting (2.13),

we make four assumptions.

Al. p < 1, so the iterative method (2.14) is convergent.

A2. p is an eigenvalue of M'IN: there is a mesh vector U 0 such

that pM1U = NU.

A3. There is a positive constant No, independent of h, such that

|NIh N0 .

A4. There are a smooth function q and constant q0 with

q(x,y) R q0 > 0 on

and a constant D > 0, independent of h, so that whenever U and V

are mesh vectors satisfying (2.12) we have

(NU,V) = (qU,V) + E,

where

IEI S hD[(IV xUI+IV UI,IVI) + (IUI,IVxVI+IVy VI) + (IUI,IVI)]

+ h2D[(- U,U) + (-AhVV)]I

Assumptions Al - A3 are in effect more or less common; this will

become clear in section 6. Our main new concept is A4. As might be

expected, verification of A4 and the determination of q are the

important technical steps when applying our analysis to any particular

splitting. But we shall see that these steps are not difficult.
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When a splitting (2.13) satisfies these assumptions, the

asymptotic behavior of p as a function of h is readily discovered. We

begin with the elliptic case.

2

Theorem 3.1. Let A correspond to h Lh. Suppose the splitting

(2.13) satisfies Al - A4. Let A0 be the smallest eigenvalue of the

problem

(3.1) Lv Aqv in 0, v = 0 on &Q.

Then

(3.2) p= I - A0h 2 + o(h2)

Proof. Let U be the eigenvector associated with p in A2, so that

pMU = NU.

Subtract pNU from both sides and use (2.13) to see that

(3.3) AU = ((I - p)/p)NU.

By Al,

(3.4) p (I - p)/(ph )

is positive. Because A represents h 2Lb, (3.3) corresponds to

(3.5) LhU = pNU in Qh' U = 0 on Qh.

Indeed, whenever X 0 satisfies

(3.6) XM = NX

for some nonzero X, then

p.1



p = (X) 1 - )/(X2)

is an eigenvalue of (3.5). Conversely, if p is an eigenvalue of (3.5)

and l+ph 2 * 0, then

X = X(p) :=1/(1 + ph 2

is an eigenvalue of (3.6).

For fixed h, let 5 be an eigenvalue of (3.5) minimal in magnitude.

The basic result of [24] shows that A ~ 0 as h 4 0 -- that is,

- 2
A +o(1). It follows by positivity of A0 that Re(l+ph )> 0 for small

whnc 0 = -

h, whence /Cl+ph 2) is a well defined eigenvalue of (3.6). Hence

-2 2
p Z IXI = 1/1l + ph I = 1 - [A 0 + o(l)]h

But p given by (3.4) is an eigenvalue of (3.5) by construction, and so

(l-p)/(ph 2) ~ A 0+o~l), by the minimality of 5. We deduce that

22P 1 1/0l + (A0 + o00))h) 1 - A0 + o(1)1h.

Comparison of this and the previous inequality proves (3.2). 03

Parabolic equations lead to discrete singular perturbation

cigenvalue problems, so in the general nonself-adjoint case we can

establish only an inequality analogous to (3.2). We arrive as before

at (3.3), where A represents h 2 1h; hence

(3.7) h 2(c/1 + L h)U =((l - p) /P)NU.

We make a basic assumption about the ratio of the time step T to the

spatial mesh size.

12



P1. There are constants c 1 > 0 and 0 < at < 2 such that h 2/P = Ch.

Now define

(3.8) M : (I - P/p

we deduce from (3.7), (3.8), and P1 that in the parabolic case (3.3)

corresponds to

(3.9) ;U + h2  LhU = VNU in U = U 0 ona%

where

(3.10) ;(x,y) c C(X,Y).

Theorem 3.2. Let A correspond to h 2 2h. Suppose PI holds and the

splitting (2.13) satisfies Al - A. Let

Ai1:= min {c(x,y)/q(x,y) :(x,y) e .

Then

(3.11) pI I- Ah +o~)

Proof. Because p is positive, (3.11) is equivalent to (1-p)/(ph)

p Z A 1+o(1). Suppose this inequality is false. We may then assume

(3.12) 0 6 p I 2A V

Let U be the eigenvector of (3.9) associated with V. Normalize 11U1 h to

be 1. By A4,

(3.13) p(MU,U) p(qUJ,U) + Elf

where, using Lemma 2.2,

13



JE 1 1 2phlD[2(-AhU,U)J 1 2 + 2ph 2D(-AhU,U) + phD).

Use (3.12) and the inequality 2ab !- a 2a-2 +b 2 B to get

1EI1 1 16A 1 2D 2h a+B/2 +4A 1Dh tB + 2A IDh,

where we have defined

B :=h 2-r(-AhU'U).

Lemma 2.1 shows that B > 0. It follows from (3.9) and (3.13) that

(cU,U) + B = p(qU,U) + E 1 +EV

with

1E 21 h 2 -aK2(-AhU,U)l 1/2 2h 2 -GK2 E-2 + BO2

and K :=IdI,+Iei,. Choose 6 so small that the coefficients of B in

the estimates of EIand E2sum to less than I for small h. Then

(cU,U) 5p(qU,U) +2h 2aK 26- + 16A 1 2D 2h t+ 2A IDh.

The theorem follows at once. 01

When the splitting is seif-adjoint -- a frequent occurrence -- we

can use the variational principle to establish equality in (3.11).

Theorem 3.3. Under the assumptions of Theorem 3.2, suppose also

that we have

SI. A and M are Hermitian and positive definite.

Then

(3.14) p I-A Ih 1+ o(h)of

14



Proof. Fix e > 0 and choose v &(x,y) e C 4) to vanish on 30 and

to satisfy

(3.15) fC v.2 dx dy A+
(3.15) fo qv,2 dx dy A +.

Now A2 and Sl imply that p =sup [(NX,X)/(MX,X) X *01. Choosing X

as the mesh vector V Edetermined by point evaluation of v & yields

(3.16) p a (NVC9 EV)(V ,MVC) E (NVEV E)/[(AV &9V E) + (NyCI EV)]

Observe that

(AV 6,V ha[-vp + h 2-aLhVe,VC)].

It follows from the smoothness of v~ that

h 2(AVIV)= ha rru ;v & dx dy+O0(h )1t ;

moreover, by A4

h 2(NIV) = .jo qv,2 dx dy + o~i).

Combining these equalities with (3.15) and (3.16) yields

p a 1 - (A1I + .)hG + h

which together with (3.11) establishes the theorem. 0

Note that hypothesis Si requires d e 0 for the operators (2.1)

of the model problems.
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4. Some block iterative methods. We take up now a description of

specific block iterative methods corresponding to (2.13). The block

structure of an iterative scheme for the linear system

AX= Y,

where A is an nXn matrix, is completely determined by a block partition

of the n-vectors. Suppose every n-vector X is decomposed into

subvectors

X = (X1,X2, . ,Xr)t

and each X. is itself an n.-vector. This partition of X induces a

block partition A = [A. .] in which each A. . is an n.Xn. matrix. The
1,9 I j

corresponding block Jacobi iterative scheme is

(4.1) A. ) = - I A X (i-l) + y..
(4.1) 1i,i i 0si Ai,s s +i

In terms of (2.14), M is the block diagonal matrix H diag[A i,i. The

corresponding Gauss-Seidel scheme is

(4.2). A. -l)A+ yA
(4.2) Ai,iXi (V )  Y s<i Ai,s X ss>i is s +

while the successive overrelaxation (SOR) method with relaxation

parameter w is

A .X.(v )  WY A Xs(v) YE A14 1 - 5<i " ms>i Ai,s 5(4.3) 1,2 1 I ' > '

+ wY. + (I -w)A. .X. v' l)1 1,1 1

We are interested in specific block structures that arise in a

natural geometric way. Recall that a mesh vector U is defined on the
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rectangular set of mesh points Qh We will decompose U into blocks of

components corresponding to lines or subsquares of mesh points.

Formally, let k be a fixed integer factor of P, so that

(4.4) P = kQ for some integer Q.

In the k-line block structure (see [22] or [231 for a detailed

description), each block of U comprises the unknowns U.. associated

with the points on k consecutive horizontal (or vertical) grid lines.

Index the blocks by s; we have

(4.5) Us := {Ui,k(s-l)+j : 1 i S P, 1 ; j S k1.

The kxk block structure is described in [31, (251, and 126). Each

block comprises the unknowns associated with a kxk square of mesh

points. We distinguish these blocks with a double index (r,s):

(4.6) Ur,s := [Uk(r-l)+ik(s-l)+j 1 !S i, j 5 k).

To write down the matrices A, 11, and N of the Jacobi iterative

method for each of these block structures is straightforward but

tiresome. We shall give a unified analysis of the Jacobi method for

these structures. But for illustrative purposes we first sketch a

development of the (horizontal) k-line scheme for the elliptic problem

(2.9).

For I cy 'S P define the PxP matrices

DO C= 1-1-hdi,/2, 4, -l+hd*, a2]

(4.7) S0 : diag!l+he io/21 (1 5 i ;S P)

T diag[l-hei 0 /2].

17



The notation indicates that D Yis tridiagonal while S0 and T0 are

diagonal. For example,

a if lip- ii > 1

-1-h ( 2 if j=i - 1
1Cy 4 if j iA

-+hd.i' /2 if j=i + 1.

With this ordering of the mesh points into horizontal lines, A is the

P X2block tridiagonal matrix

(4.8) A = -Scry Da, -Tal (I S a ! P).

Now collect the lines of unknowns k at a time. For 1 :- s !- Q let

H5s be the kPxkP block tridiagonal matrix

M8 9 =-S k(s-l)+a, D k(s-l)+a'l -Tk(s..l)+a I (I S a 5- k),

and define the kPxkP block matrices

R 5 := 0 0 Ws 0 k(s-l)+l ]
Observe that A is then the block tridiagonal matrix

A = f-W 8 , M S - l( )

In the k-line Jacobi scheme, A splits into the block matrices

M : diag[H S], N [= W S, 0, R S).

We now seek a simple quantitative description of N for both the

k-line and the kxk block partitions when k a 2. If B and C are

18



matrices, we mean by B = C+O(h) that there is some constant K so that

I(BX,Y) - (CX,Y)j : KhJ(X,Y)J for every X and Y.

Because S and T0 are O(h) perturbations of the PxP identity matrix,

let us for the moment ignore the small terms. We define a

one-dimensional operator N on vectors 0 := (01, 2" ,op)t as

follows:

[N]ks+ : =  ks+l I s 6 Q-1, a = 0

(4.9) ks s I Q-l, a= I,

[1j, := 0 for any other subscript j.

is a weak multiplication operator, as we shall see in the next

section. Now let Nx be that operator on mesh vectors U that acts on U

only in the x-direction, and in that direction acts as N. Define N inY

a similar way. For instance, with I i : P we have

:= i,ks+l I s Q-l, Cy= 0

INy Ui,ks+u

(4.10) Ui,ks I s Q-1, a 1,

INyUi,j 0 for any other subscript j.

Observe for each block structure that the Jacobi splitting (4.1)

yields the same N for both the elliptic and parabolic operators (2.6)

and (2.7). This is so because the matrix representing the operator

Ih-Lh is a diagonal matrix. A straightforward computation proves the

next theorem, which summarizes the essential nature of N.
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Theorem 4.1. Let k -2 2. In the k-line Jacobi scheme (4.1)/(4.5),

(4.11) N N + 0(h),
y

and for the kxk block Jacobi scheme (4.1)/(4.6) N is given by

(4.12) N N~ +N + O(h). 0
x y A

5. The operator N. We now show that RU converges weakly to (2/k)U, so

that R is a weak multiplication operator. In this section U and V are

real vectors with P components. For each such vector X it is useful to

define X =0. It is clear from (4.9) that 9 samples U twice in each

block of k points {U ks+a :0 a 5 k-i1, where 0 5- s !- Q-1 -- except in

the first and last blocks. Roughly, but perhars vividly, R sees U

about 2/k of the time; precisely, from (4.9) we have

(5.1) (RUV) = 7- Q- (Uk Vkl + Uk Vk)

If U and V arise from the evaluation of smooth functions u(x) and

v(x) on the points (x.i := ih :0 5 i 5-P+l) , then

U ..Uk and V (0:j9k-)
ks+j ksks+j ks+1 ( -)

whence

UsVsl ~U V (0 j 9k-1).ks ks+1 ks+j ks+j

Summiing this approximate equality over j and dividing by k gives

U ks Vks+l ' (1/hk)YIo Uks+j Vks+j h

which looks like a Riemann sum over the interval [x ks' Xk+kJ for

(1/hk)f u(x)v(x) dx. Consequently,
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(RU,V) (2/hk) f0 1 u(x)v(x) dx (2/k)(U,V).

Now we make this argument precise. Let V be the forward

difference operator, as in (2.8). Fix j for the moment. Obviously

U U'hI VU V j1 VV
Uks 1 ks+j a0=0 ks+a' ks+1 Vks+j -h 0=-1 ks+o

(as usual, a vacuous sum has value 0). Hence

U V U .V .+ h2(1 -iVU )(,-W 1)
ks ks+1 ks+j ks+j a=-0 ks+a a0=1 ks+a

(5.2)

a-1 ks+j ks+a _0 ks+j ks+cr

Replace U ksjand V ksjin the last two terms of (5.2), using the

identity

Xks+a Xks+j n7-a ks+n*

This substitution gives

U ksVks+I U ks+j Vks+j + h 2G 0 1 (U)G 11(VM

(5.3) h'Ij=1 Uks+11 ks+aO - = ' t l ks+ aV ks+a

0=1j:I G,j(UVks~a h = 7-- a,j(VVks+a'

where for 0 S a S j-1 S k-I we define

G .(X) :=jI-1 VX ,G(X,s) I k-1 IM I IG M(XI.ajn=a ks+n n=0 ks+n a

Sum (5.3) over 0 S j S k-I and divide by k to get

(5.4) UksVks+ j0 ksV k + (1/k)E,

with
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IE5 I hk jk-l lUkj ksVV j + j0k- kVs+,jsj=0 ks W kk-1 j= k~ ks+j

+ 3h 2kG(U,s)G(V,s).

By the Schwarz inequality and the inequality 2ab ;Sa2+

G(U,s)G(V,s) 5 (k/2)[(7 k-1 J'VU .12 ) + (.k-i V 2)1j=0 ks+j 1J=o ksI)I

Estimate the last term of (5.5) in thi4 way, and sum (5.4) over s to

deduce that

(5.) Q-1 UksVkl (l/k)(U,V) + g2

where

lZI ;S 2h[(IUI,IVVI) + (lVUl,lV1)l
(5.7)

+ 3h 2 k[VU,WU) + (VV,VV)I.

Comparison of (5.1) to (5.6) shows that we can exploit the

symmetry of this argument in U and V to prove the following theorem,

which quantitatively describes N

Theorem 5.1. Let N be given by (4.9). For P-vectors U and V,

(5.8) (iRU,V) = (2/k)(U,V) +

and E is estimated by (5.7). D3

6. Rates of convergence. In this section we take up the problem of

determining the convergence rates of the iterative methods (4.1)-

(4.3) when applied to the elliptic and parabolic model problems (2.9)
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and (2.10) with the k-line and kxk block structures described in

section 4. We limit our discussion to the case where k a 2; although

a similar argument applies when k = I (and formulas (6.4) - (6.9) are

valid for k = 1), we have not in that instance described N. We begin

by showing that the Jacobi method for these block structures satisfies

the assumptions of section 3. After p is determined for the Jacobi "

method it is easy to find the convergence rates of the Gauss-Seidel and

SOR methods.

Lemma 6.1. Assumption Al holds for both block structures and both

problems if h is sufficiently small.

Proof. In all cases, inspection of the submatrices (4.7) of A, as

given by (4.8), shows that the diagonal elements of A are positive and

the other elements are, for small h, nonpositive. Therefore N is

nonnegative and A and M are H-matrices: that is,

(6.1) N a 0, M"I  0, and A-1  0.

Moreover, A is irreducible for small h. Al follows from Theorem 3.13

of [33). 0

Lemma 6.2. Assumption A2 holds for both block structures and both

problems if h is sufficiently small.

Proof. This follows from (6.1) and the Perron-Frobenius theory;

see Theorem 2.1 in 133). 0
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We remark that when nonnegativity of M I or A- fails, Al and A2

often can be established by other means. Vor example, Al holds when A

is positive definite and N is nonnegative. A2 follows from supposing

that M is positive definite, N is symmetric, and the splitting

satisfies block property A (see [i], (331, [351, [25]), for then

eigenvalues of M 1N are real and occur in signed pairs.

Lemma 6.3. Assumption A3 holds for both block structures and both

problems if h is sufficiently small.

Proof. In light of Theorems 4.1 and 5.1, N0 1 2+0(h) 5 3. 0

Lemma 6.4. Assumption A4 holds for both block structures and both

problems if h is sufficiently small. For the k-line scheme,

(6.2) q = 2/k, D = max {3k+O(h), eLj,/k},

while for the kxk block scheme

(6.3) q = 4/k, D = max {6k+O(h), (IdI,+e,,)/k}.

Proof. These statements essentially follow from Theorems 4.1 and

5.1. We sketch the argument for the k-line block structure (4.5).

From Theorem 4.1 and (4.10),

MNUMV = 7.P  7.Q-1 (I +he /1
i=( S=O heiks+/2]U i,ks i,ks+l

iP  Q-1 he. /2 1U
+i= 1 Q0 [ - heiks+l/2Ui,ks+Vi,ks.

Following the steps from (5.1) to (5.6), we estimate the term

T(i,s) [1 + hei,ks+i/2 1Ui,ksVi,ks+l

24



to get

I T(i,s) = (l/k)CU,V) + E/2 + hR/2,

with k satisfying (5.7) and

IRI 6 leI.[(l/k)(IUI,IVI) + IEI/21.

The second term in the expansion of (NU,V) is appraised in the same

way, to yield

(NU,V) = (2/k)(U3,V) + E

+ h(1e10/k)(IUI,IVI) + h 23k(l+hlej,/2)[(-AU,U)+(-AV,V)I.

But this implies the inequality of A4, with D given by (6.2). D

Our next theorems follow immediately from these lemmas and

Theorems 3.1 - 3.3.

Theorem 6.5. Let p(kL) and p(kB) denote the spectral radii for

the k-line and kxk block structures, respectively, of the block Jacobi

scheme applied to the elliptic problem (2.9). Let A 0 denote the

smallest eigenvalue of the problem

Lv=Av in D, v =0on 30.

Then

p(kL) = I - (k/2)A 0h 2+ o~h 2,

(6.4)

P(kB) = I - (k/4)A 0h 2+ o~h ) 0
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Theorem 6.6. Let p(SkL) and p(SkB) denote the spectral radii for

the k-line and kxk block structures, respectively, of the block Jacobi

scheme applied to the parabolic problem (2.10), and suppose that PI

holds. Let

A1 := min [ (x,y) : (x,y) e .

Then

p(SkL) S 1 - (k/2)Alha + o(h'),

(6.5)

p(SkB) 5 1 - (k/4)A ha + o(hC)

and equality holds if d = e =_O, so that Sl is satisfied. 0

We remark that the character "S" is to remind us of the singular

perturbation nature of the parabolic equation.

When a matrix A under a block partition satisfies block property

A, then the spectral radii DGS of the Gauss-Seidel method (4.2) and Pw

of the SOR method (4.3) are determined by the spectral radius p of the

Jacobi method ([1], [33, chapter 41, [35]):

PGS P2 (Pw + w 2 = w2P2pw .

Moreover, pw is minimized for a specific w:

wb 2/(1 + (1 - p2)1/2), Pb =b " 1.

With the block structure imposed by (4.5) or (4.6), A has block

property A. This observation proves our next result.
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Corollary 6.7. Let A represent h2Lb.* Then

PGS () = - MA0 h
2 + h2

(6.6)

Pb ML) =1 - 2(kA 0) 
1 /2h +Oh)

and

PG k)= I- (k/2)A 0h 2+ o(h 2,

(6.7)

pb (kB) = 1 - M2A 0) 
1 /~2h + o(h).

Let A represent h 2 2h' Then

PGS (Sk) !5 1 - M10+ o~h)a

(6.8)

pb (SICL) 1 1 -2(kA 1) 12h a2+ o(b a/2

and

PGS (Sk) 1 - (k/2)Ah I ~h)
(6.9)

Pb(SB 1 -(2kA 1) 12h ct2+ O(h ). 0

7. Other operators. In this section we extend our theory to cover the

more general operators L and I defined by

Lu:-(au )X -(bu y) Y+ du x+ eu Y+ fu,

(7.1)

fu cu t + Lu.

For simplicity we have excluded terms in the cross-derivative u X.

Self-adjoint operators L with this term have been discussed in f 23].

We assume for convenience that a, b, c, d, e, and f are smooth

functions on 0, that c satisfies (2.5), and that
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(7.2) a(x,y) a0 > 0, b(x,y) k b0 > 0, f(x,y) a 0 on Q.

L is uniformly elliptic by the strict positivity of a and b, and

satisfies a maximum principle by virtue of the nonnegativity of f.

As in section 2, we let U be a mesh vector on the mesh-points 0h

defined by (2.3). At points (x.,y.) of f we define

ai, : (ai~ + ai ~)/2, bij : (hib + bi ~)/2.

The discrete approximations to (7.1) are then

[LbUi := - [ai+k, (Ui+l, j - Ui ) - a_,j(Ui - U )]/h

7)- [bij+(Uij+1 - Ui, ) - bilj. (U.i j - U ij-l)]/h2

+ d i~(Ui+l, j - U i.lj)/(2h) + e i1 (Uij+1 - U ij. 1)/(2h)

+f. .U.1,3 1,3

and

(7.4) [IhUli,j := (ci,j/z)Ui,j + [LhU]i,-

It is not difficult to see that the machinery of section 3 still

works. The main theorem of [24], which relates the minimal eigenvalues

of (3.1) and (3.5), is easy to establish with L and Lb given by (7.1)

and (7.3), respectively. Consequently Theorems 3.1, 3.2, and 3.3

apply, mutatis mutandis, to splittings of the matrix A arising from

(7.3) or (7.4).

Now we must determine q for the Jacobi scheme, using either of the

block structures (4.5) or (4.6).

For the k-line structure, a direct computation yields

(NUV) = [biks+ + he i,ks+l/2] i,ksVi,ks+l

+ I [bi,ks+- hei,ks/2]Ui,ks+lVi,ks,

28
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where the sum is over 1 15 i 'I P, 0 s Q-1. Consider a term

T(i,s) [b iks+ + he i,ks~ /1 U1 iks Vi ks+l

bi,ks+j Ui,ks Vi,ks+1 ~ i,ks+l 2) i,ks Vi,ks+1

+ bi,ks+ i,ks+j IUi,ks Vi,ks+l'

The factor in square brackets in the last term above is bounded by

hkIV y l, because b is smooth. Proceeding as in the proof of Lemma

6.4, we establish the validity of A with

(7.5) q = 2b/k, D = max {3klbl,+O(h), 21V h,,ie,/I

Observe that the variable coefficient b has led to a variable q.

In the same way, for the kxk block scheme we obtain

q =(2a + 2b)/k,
(7.6)

D = max j3kjaj +3klbI +O(h), 21V al +21V bi +(IdI0 +Iei )/k).

We collect our results in the following two theorems.

Theorem 7.1. Let p(kL) and p(kB) denote the spectral radii for

the horizontal k-line and kxk block structures, respectively, of the

block Jacobi scheme applied to the elliptic problem (2.9) with Lbh given

by (7.3). Let F denote the smallest eigenvalue of the problem

Lv =ybvin D, v =Oon 91,

and let r0denote the smallest eigenvalue of the problem

Lv =y(a+b)v in 0, v =0on f).
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Then

p(kL) = 1 - (k/2)F0h2 + o(h2),

(7.7)

p(kB) = 1 - (k/2)r 0h2 + o(h 2.

Theorem 7.2. Let p(SkL) and p(SkB) denote the spectral radii for

the horizontal k-line and kxk block structures, respectively, of the

block Jacobi scheme applied to the parabolic problem (2.10) with Ih

given by (7.4), and suppose that PI holds. Let

S1 : min [Z(x,y)/b(x,y) : (x,y) e 61,

r I min fc(x,y)/(a(x,y) + b(x,y)) : (x,y) e 2.

Then

p(SkL) 5 1 - (k/2)F 1ha + oh

(7.8)

p(SkB) 5 1 - (k/2)r1hO + o(h ),

and equality holds if d E e E 0, so that S1 is satisfied. 0

The nonzero pattern of A is the same whether A arises from (2.6)

or (7.3). In the more general case, then, A retains block property A

for both the k-line and kxk block partitions. Consequently the

analogue of Corollary 6.7 is valid. We leave a statement of this

Corollary 7.3 to the reader.
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B. Other domains. Extension of our results from two to m space

dimensions is straightforward. We sketch this for the model problems

set in the m-dimensional unit cube, and then return to the

two-dimensional setting to discuss domains other than the unit square.

Treatment of general domains in higher dimensions is similar, while

more general operators on these domains can be handled as outlined in

section 7.

Impose a uniform mesh of size h = 1/(P+I) on the unit cube

Q(m) := (x = (x, .. ,x e Rm : 0 < x. .
1

Let P be a multi-index c = (2 ""m,) e Zm' and let y(i) be the

multi-index whose ith component is I and whose other components are 0.

mBy x B we mean the point x = (01h, , h) in R . Hence putting

allows us to write

(1h(m) = [x e B),

8.(m) = (x, : P e B and at least one Pi = 0 or = P+1.

With the m-dimensional Laplacian A(m) := .i a2/axi2  our model

operators are

Lu -A(m)u +' dl u/axi= u/1 i

(8.1)

u :=c8u/Bt + Lu;

we suppose that c and all di are smooth and that c satisfies (2.5).

Discretization of these operators is done as in (2.6) and (2.7). Let

U = (UP) be a mesh vector. The approximation of A(m) is given by
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r2
(8.2) := Ii (U . Ci) - +

and the discrete operators corresponding to (8.1) are

(8.3) [LhU1 : (-A.h.m)UJp + 7i di'P (U +(i - U -(i))/(2h),

(8.4) [£hUlp ( cP/)UP + [LhU].

In m dimensions there are m obvious block partitions. Suppose for

example that m = 3. In the k-plane block structure, each block of U

comprises the unknowns U associated with the points x on k

consecutive planes. Indexing the blocks by s, we have

U5 := {U e B, k(s-l) < P3 S ks}.

In like fashion, for blocks of kxk lines the basic subblock is

Ur,s := {U e B, k(r-1) < P2 ' kr, k(s-I) < P3 : ks),

and kxkxk blocks are given by

Urs,t := {UP : P e B, k(r-1) < P, 9 kr, k(s-1) < P2 k ks,

k(t-1) < P3 - kt).

Let us agree to call a basic block an s-slice of U if we partition U by

imposing restrictions of the form k(si-1) < P. 9 ksi on the indices

PM 8-s+1 -. Pm. With this notation, it is easy to state and prove the

m-dimensional version of Theorem 4.1.

Theorem 8.1. Let k k 2. Denote by N. the operator acting as R in

the xj -direction. Let A represent h2L h or h
22h. For the block Jacobi

scheme (4.1) based on s-slice blocks,

NI N. +O(h).Dj-i-s+1 .1
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Observe that s-slice decompositions preserve block property A.

Assertions similar to Lemmas 6.1 - 6.4 are readily demonstrated; the

following lemma collects the results.

Lemma 8.2. Let k Z 2 and let A correspond to h2Lh or h
2 ,

Assumptions Al - A4 are satisfied by the block Jacobi method (4.1)

based on s-slices. Specifically, for I 6 s S m,

INIh i NO = 2s/k + O(h) 9 s + 1, q = 2s/k,

D = max {3sk+O(h), m- Id 1./kl,
(8.5)

IEI hD' 1 (IV.UllIVl) + Im  (IUI,IVlVI) + (Iul,IVI)]

+ h2D[(-Aa(m)U,U) + (-L(m)V,V)]. 0

Now the machinery of section 3 grinds out theorems like those of

section 6. Rather than turn the crank, we choose to consider problems

with the model operators (2.1) set in more general domains f) of R2.

We begin by describing 0 and "h- Assume that 0 is a bounded

domain in R2 with Lipschitz boundary a, and that locally C lies always

on one side of M. This last condition ensures that f has no internal

cusps. Boundedness implies that 6 has "leftmost" and "bottommost"

tangents x = x0 := min [x : (x,y) e 61, y = y0 
:= min y (x,y) e

Choose h > 0 and impose on R2 a grid of lines

(8.6) x = xi := x0 + ih, y = yj := y0 
+ jh;

the intersections (xi,yj ) are called grid points. Define 6h to be the

collection of all the grid points (x.,Y j) e 0 together with all the
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points of intersection of the grid lines (8.6) with 80. Then 8h:

fl 8l, and b consists of those points of 6h that lie in Q. The

points of Q are called mesh points.

hhThe points of Dhare conveniently viewed as being of two types:

the four nearest neighbors of a regular point are themselves grid

points (xi,yj), and the other points of 0h are called irregular. We

consider finite difference approximations of the operators (2.1) that

differ from the earlier constructions (2.6) and (2.7) only at irregular

points. Any of a number of approximations at an irregular point will

suffice for our purposes; it is only necessary that the approximation

be at least an interpolation of degree 0 (see [13, pp. 199 ff.], [6]).

Proceeding as before brings us to a linear system (2.11), to which the

block iterative methods of section 4 can be applied.

To use the theory of section 3, we need to establish the relations

(NU,V) = (qU,V) + E,

(8.7) lEI 4 hD[(IV UI+IV UIIVI) + (lUIIVxVI+IV VI) + (IUI,IVI)1

+ h2D[(-AU,U) + (-,NV,V)]

of A4 for mesh vectors U, V that vanish on 9% . It is clear from the

argument of Lemma 6.4 that (8.7) remains true if 6 is composed of "grid

rectangles," whose sides are grid lines (8.6). All that remains is to

prove (8.7) for more general domains. But this will follow if we can

show that 6 is almost a union of grid rectangles. To this end, note

that 0, being bounded, is contained in some rectangle

:= {(x,y) e R : x0 S x S xp+1, YO y YP+, "
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Pick an integer k 2 2 and subdivide R into closed subrectangles

Rr,s := {(xy) : Xk(r.1) x ; xkr, Yk(s-1) S y  Yks}"

is the union of rectangles R that lie entirely within 0, andr,s

fragments of such rectangles. Let R be the interior of the set

:= r,s : Rr,s C

and for any subset G of R let (U,V)G denote the inner product of mesh

vectors U and V over the mesh points in G. Because N is bounded, (8.7)

is an easy consequence of the following lemma, whose proof is similar

to the proof of inequality (13) in [11].

Lemma 8.3. Let U and V be mesh vectors that vanish on 80h* Then

(8.8) I(UV)Q - (U,V)RI S 2h2 w 2[(-AhU,U) + (-AhV,V)]

whenever h S h0, for some constants w and h0 that depend only on Q.

Proof. Divide M£ into a finite number of pieces for which the

angle of the tangent with either the x- or y-axis exceeds some positive

value (say 300). For instance, let B be a piece of the boundary that

is this steep with respect to the x-axis. Let S be the horizontal

strip of ( that abuts B and is k grid lines high, so that S is'for some

fixed s the union of rectangles R and at most two pieces composed ofr,s

fragments of such rectangles. Denote by F the piece touching B -- say

the leftmost piece. The smoothness of W£ ensures that there are

positive constants h0 and w, depending only on 0, so that the x-width

of F is at most wh when h I hO. See Figure 1.
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Now consider a horizontal mesh line y = yin this strip S; let

x a be the leftmost and x b the rightmost. mesh points on the line, andI

let xfbe the first point in the leftmost subrectangle in S. Observe

that txf - x I S wh. Because U vanishes on B, at each point x. between
f a

xa and x f we have

1j I i-1 ( U .)
1,3 0 0+1,j 0,3

and similarly for V. Hence IU. 1 5 hli~l IV U .1j, so
1,3 0a x0,

ll. .V .1 5 h 2(1 f- IV U .)(1 f1 IV V .1)
,3130-a x 0,3 0r-a x 0,3

h 2 W(I~ f 1  U 2 1 2 (I f V1 0. 2)1/2

0a h fl2+ IV V .1 21/2

h2 b-i 2 12 12

Now sum over xibetween x a and x f to get

IY iU lii 22b1 -1i 2 2~

;S hW 0 . [JV2b 7U .1 2+ IVy 1 21/2P

and sum this last inequality over j to see that

I(UIV)t 1 h2 w2 [IN? 1 2, + IV 1 2I 1/2.

Repeat this over every fragment F and boundary piece B. Then each

subrectangle R rswithin fl is covered at most four times, so

I(U,V)~ (UV)RI S 2h 2w2[IV UR2 + IV U1
2 + IV V12 + IV 2

Q R h y h x h y h'

(8.8) follows from Lemma 2.1. 0
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9. How general is the method? We expect that our techniques will

permit us to analyze any block iterative scheme in which the blocks

have a regular pattern, so that NU constitutes an orderly, weighted

sampling of any mesh vector U. Evidently most finite difference

approximations on nice meshes give rise to such operators N.

For instance, on uniform meshes in R it will be true that -

h2 [LhU] = I A (xt)U ,

where runs over the set of indices 2(p) of "neighboring" mesh points

of the point x . Each smooth enough coefficient A (xQ) will satisfy

A (X0 = A tx) + O(h)

for some smooth function A, and will be a linear combination of the

coefficients of the differential operator L to which L is an

approximation. Because N is derived from the matrix A representing

h 2Lh , we will have

(9.1) !NU1 = I t B xU .

If N is sufficiently regular, then there will be some regularly

distributed subset S of points of 11h so that

0 X S I(9.2) B x)= €s x

B (xp) + O(h) e -(P), x e S.

Consider now a typical term in (NU,V). At a point x of S,

INUJAV, P Y B. ( N VO.
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It follows from (9.1) and (9.2) that if U and V are smooth then

INU]P VC I t B(x )U VO;

hence

(9.3) (NU,V) Z (qU,V),

where q accounts for the terms Bt and the relative cardinalities of

!( ), S, and 0h" The approximate inequality of (9.3) indicates that N

is a weak multiplication operator. Development of an estimate of the

error in (9.3) proceeds as in section 5 and in the proof of Lemma 6.4.

In effect, our view of N as a weak multiplication operator has

already been used in [23, section 7], where a splitting somewhat

different from the usual k-line block Jacobi scheme is treated.

Rectangular meshes, which have uniform spacing h. in the x.-direction,
1 1

can also be handled, as can other boundary conditions. We see then

that this viewpoint unifies the derivation of the convergence rates of

block iterative methods for elliptic and parabolic finite difference

equations. In fact, the technique will also yield estimates of the

rates of convergence of block relaxation methods applied to the

matrices arising from finite element approximations. But finite

elements are powerful in part because they admit irregular partitions

of Q. For such partitions it is not apparent how to group the unknowns

so that a systematic block iterative scheme is easy to implement. We

direct the reader to [4] for an example of a successful application of

these ideas in a simple case, where the iterative method was easy to

program.
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Figure 1. The strip S of .

F is the union of the two leftmost fragments.
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